minimax regret - definição. O que é minimax regret. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é minimax regret - definição

EXPECTED DIFFERENCE BETWEEN THE UTILITY OF A BAYESIAN STRATEGY AND THAT OF THE OPTIMAL STRATEGY
User:Abd/Bayesian regret; User:Silver seren/Bayesian regret; Draft:Bayesian regret

Regret (decision theory)         
ECONOMICS MODEL WHICH INCLUDES A REGRET TERM IN THE UTILITY FUNCTION (DEPENDING NEGATIVELY ON THE REALIZED OUTCOME AND POSITIVELY ON THE BEST ALTERNATIVE OUTCOME GIVEN THE UNCERTAINTY), VIOLATING TRANSITIVITY
Minimax regret; Investor's regret; Regret (game theory)
In decision theory, on making decisions under uncertainty—should information about the best course of action arrive after taking a fixed decision—the human emotional response of regret is often experienced, and can be measured as the value of difference between a made decision and the optimal decision.
Minimax theorem         
THEOREM PROVIDING CONDITIONS THAT GUARANTEE THAT THE MAX–MIN INEQUALITY IS ALSO AN EQUALITY
Von Neumman's minimax theorem
In the mathematical area of game theory, a minimax theorem is a theorem providing conditions that guarantee that the max–min inequality is also an equality.
Minimax Limited         
  • A Minimax extinguisher
GERMAN COMPANY
Minimax Limited was a British manufacturer of fire extinguishers founded in England in 1903. Their unique conical fire extinguisher was known as 'The Minimax'.

Wikipédia

Bayesian regret

In stochastic game theory, Bayesian regret is the expected difference ("regret") between the utility of a Bayesian strategy and that of the optimal strategy (the one with the highest expected payoff).

The term Bayesian refers to Thomas Bayes (1702–1761), who proved a special case of what is now called Bayes' theorem, who provided the first mathematical treatment of a non-trivial problem of statistical data analysis using what is now known as Bayesian inference.